This course provides an introduction to using Python to analyze team performance in sports. Learners will discover a variety of techniques that can be used to represent sports data and how to extract narratives based on these analytical techniques. The main focus of the introduction will be on the use of regression analysis to analyze team and player performance data, using examples drawn from the National Football League (NFL), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier LEague (EPL, soccer) and the Indian Premier League (IPL, cricket).

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Foundations of Sports Analytics: Data, Representation, and Models in Sports
Dieser Kurs ist Teil von Spezialisierung Sports Performance Analytics


Dozenten: Wenche Wang
25.582 bereits angemeldet
Bei enthalten
(193Â Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Use Python to analyze team performance in sports.
Become a producer of sports analytics rather than a consumer.
Kompetenzen, die Sie erwerben
- Kategorie: Data Cleansing
- Kategorie: Correlation Analysis
- Kategorie: Data Analysis
- Kategorie: Statistical Methods
- Kategorie: Data Manipulation
- Kategorie: Python Programming
- Kategorie: Probability & Statistics
- Kategorie: Descriptive Statistics
- Kategorie: Statistical Hypothesis Testing
- Kategorie: Regression Analysis
- Kategorie: Statistical Analysis
- Kategorie: R Programming
- Kategorie: Matplotlib
- Kategorie: Pandas (Python Package)
- Kategorie: Scatter Plots
- Kategorie: Data Visualization
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂĽgen
13 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂĽhrender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 6 Module
This week introduces a simple example of sports analytics in practice - the calculation of the Pythagorean expectation to model winning in team sports. This can also be used for the purposes of prediction. Examples are developed for five different sports leagues, Major League Baseball (MLB), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier League (EPL-soccer) and the Indian Premier League (IPL-cricket).
Das ist alles enthalten
8 Videos6 LektĂĽren1 Aufgabe7 Unbewertete Labore
This week will use NBA data to introduce basic and important Python codes to conduct data cleaning and data preparation. This week also discusses summary and descriptive analyses with statistics and graphs to understand the distribution of data, the characteristics and pattern of variables as well as the relationship between two variables. At the end of this week, we will introduce correlation coefficients to summarize the linear relationship between two variables.
Das ist alles enthalten
6 Videos6 LektĂĽren3 Aufgaben5 Unbewertete Labore
This module introduces some ways of representing data using examples from MLB, the NBA and Indian Premier League. MLB data is used to analyze the spatial distribution of different hits. NBA data is used to generate heatmaps to illustrate the different ways in which players contribute. IPL data is used to show how team performances can be compared graphically.
Das ist alles enthalten
4 Videos6 LektĂĽren2 Aufgaben5 Unbewertete Labore
This week introduces the fundamentals of regression analysis. We will discuss how to perform regression analysis using Python and how to interpret regression output. We will use NHL data to estimate multiple regression models to identify the team level performance factors that affect the team's winning percentage. We will also use cricket data from the Indian Premier League to run regression analyses to examine whether player performance impacts player salary.
Das ist alles enthalten
6 Videos6 LektĂĽren3 Aufgaben4 Unbewertete Labore
This module uses regression analysis to investigate the relationship between team salary spending and team performance in the NBA, NHL, EPL and IPL. The module explores different ways of defining the regression model, and how to interpret competing regression model results.
Das ist alles enthalten
4 Videos4 LektĂĽren1 Aufgabe5 Unbewertete Labore
This week studies an interesting topic in sport, the hot hand. We will introduce the concept of hot hand and discuss the academic research that examines whether the hot hand is a phenomenon or a fallacy. We will demonstrate how to analytically test the hot hand using the NBA shot log data. We will test whether NBA players have hot hand by computing conditional probabilities and autocorrelation coefficients as well as performing regression analyses.
Das ist alles enthalten
8 Videos7 LektĂĽren3 Aufgaben5 Unbewertete Labore
Erwerben Sie ein Karrierezertifikat.
FĂĽgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozenten


Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
University of Michigan
- Status: Kostenloser Testzeitraum
University of Michigan
- Status: Kostenloser Testzeitraum
The State University of New York
- Status: Kostenloser Testzeitraum
University of Michigan
Warum entscheiden sich Menschen fĂĽr Coursera fĂĽr ihre Karriere?




Bewertungen von Lernenden
193 Bewertungen
- 5 stars
65,46Â %
- 4 stars
23,71Â %
- 3 stars
4,12Â %
- 2 stars
3,09Â %
- 1 star
3,60Â %
Zeigt 3 von 193 an
GeprĂĽft am 27. Aug. 2021
Great course. Although this course focuses on sports analysis, the analyzing process I learned from it can apply to any other areas of analysis.
GeprĂĽft am 26. Okt. 2023
Fantastic introduction to Python, engaging and I enjoyed that lots of different sports were discussed.
GeprĂĽft am 24. Juli 2024
This course was amazing I learned a lot of new things by doing this course .

Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
SchlieĂźen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂĽr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂĽtzung verfĂĽgbar,