This course explores the intersection of artificial intelligence (AI), machine learning (ML), and responsible business practice in our increasingly AI-driven economy. Participants establish foundational understanding of AI and ML concepts, their real-world applications, and factors driving their widespread adoption across industries. The course presents the machine learning process—from data collection and preparation through model development and evaluation—providing practical insights into how data transforms into actionable business insights.

Vente anticipée ! Débloquez plus de 10 000 cours de Google, Microsoft et autres pour 160 €/an. Économisez maintenant.


Ce que vous apprendrez
Distinguish between artificial intelligence and machine learning, their real-world applications, and the factors driving their widespread adoption.
Gain insight on the four phases of the machine learning process to collaborate and make informed decisions about AI initiatives.
Recognize different types of algorithmic bias in AI systems and their real-world consequences across various sectors.
Examine mitigation strategies for algorithmic bias and compare governance models from industry self-regulation to governmental regulatory frameworks.
Compétences que vous acquerrez
- Catégorie : Algorithms
- Catégorie : Data Ethics
- Catégorie : Data Governance
- Catégorie : Applied Machine Learning
- Catégorie : Data Processing
- Catégorie : Data Collection
- Catégorie : Governance
- Catégorie : Diversity and Inclusion
- Catégorie : Risk Mitigation
- Catégorie : Machine Learning
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Business Ethics
Détails à connaître

Ajouter à votre profil LinkedIn
juin 2025
23 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 4 modules dans ce cours
This introductory module demystifies artificial intelligence and machine learning by exploring their fundamental concepts, the differences between them, and their real-world applications that impact our daily lives. Through clear explanations and concrete examples, you'll gain essential knowledge about how these technologies function across various contexts, building a foundation for understanding their strategic importance and preparing you for deeper exploration of their mechanisms and ethical implications in later modules.
Inclus
1 vidéo13 lectures5 devoirs1 sujet de discussion2 plugins
This module provides an overview of the machine learning process, exploring the four essential phases: data collection, data preparation, model development, and model evaluation. Through understanding these foundational phases, learners will gain practical knowledge that enables effective collaboration with technical teams, better evaluation of AI initiatives, and identification of machine learning opportunities within their organizations.
Inclus
1 vidéo17 lectures6 devoirs1 plugin
This module examines how algorithmic bias emerges in AI systems, revealing why even sophisticated machine learning algorithms can produce unfair or inaccurate results. Students explore three critical types of bias—historical, representation, and measurement—through real-world examples spanning healthcare, hiring, and financial services. By understanding how biases infiltrate AI systems and learning to identify their warning signs, students develop the analytical skills needed to assess algorithmic fairness and evaluate potential solutions in business contexts.
Inclus
2 vidéos16 lectures7 devoirs1 plugin
This module equips students with practical tools to address algorithmic bias in business applications. Through examination of bias mitigation techniques—from synthetic data generation to algorithmic modifications that ensure equal performance across demographic groups—students learn how to build more inclusive AI systems. The module also explores governance frameworks, comparing industry self-regulation with government oversight approaches such as the EU AI Act, preparing future leaders to navigate the evolving landscape of responsible AI deployment while maintaining competitive advantage.
Inclus
3 vidéos18 lectures5 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Plus de questions
Aide financière disponible,